Refine Your Search

Topic

Author

Search Results

Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

Sulfur Management of NOx Adsorber Technology for Diesel Light-duty Vehicle and Truck Applications

2003-10-27
2003-01-3245
Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure.
Technical Paper

Sooted Diesel Engine Oil Pumpability Studies as the Basis of a New Heavy Duty Diesel Engine Oil Performance Specification

2002-05-06
2002-01-1671
Changing diesel engine emission requirements for 2002 have led many diesel engine manufacturers to incorporate cooled Exhaust Gas Recirculation, EGR, as a means of reducing NOx. This has resulted in higher levels of soot being present in used oils. This paper builds on earlier work with fresh oils and describes a study of the effect of highly sooted oils on the low temperature pumpability in diesel engines. Four experimental diesel engine oils, of varying MRV TP-1 viscosities, were run in a Mack T-8 engine to obtain a soot level ranging between 6.1 and 6.6%. These sooted oils were then run in a Cummins M11 engine installed in a low temperature cell. Times to lubricate critical engine components were measured at temperatures ranging between -10 °C and -25 °C. A clear correlation was established between the MRV TP-1 viscosity of a sooted oil and the time needed to lubricate critical engine components at a given test temperature.
Technical Paper

Quantitative Flow-Reactor Study of Diesel Soot Oxidation Process

2002-05-06
2002-01-1684
Advanced flow-reactor capabilities created at Cummins were applied to the study of the diesel particulate matter (soot) oxidation process. This approach complemented the on-engine studies with a number of important features, including accurate control of gas composition and soot layer temperature. Using the developed methodology for quantitative soot oxidation studies in a broad range of temperatures (200-700°C), an initial set of experiments was performed to compare the behavior of the real and model soot samples under the identical conditions (10%vol. of O2, 0-15%vol. of H2O). It was found that presence of H2O vapor synergistically enhances the rate of oxidation by O2 of the diesel soot sample. However, the behavior of the model soot sample (carbon black) was virtually not affected by H2O. Kinetic analysis of the obtained results revealed an unusual type of behavior, with the activation energy of soot oxidation increasing in the course of the experiment.
Technical Paper

Model-based Closed-loop Control of Urea SCR Exhaust Aftertreatment System for Diesel Engine

2002-03-04
2002-01-0287
Based on our error budget analysis, the urea SCR aftertreatment system is uncontrollable under EPA 2007-emission level without an effective closed-loop control strategy. The objective of the closed-loop control is to improve transient response as well as reduce the steady state control error. But the inherent large dead time in the urea SCR aftertreatment system makes the closed-loop control a challenge. In this paper, an innovative closed-loop control architecture is introduced, which combines model-based feedforward control with variable gain-scheduling feedback control. Transient response is improved with the inverse-dynamic feedforward control and the variable-gain closed-loop control. The steady-state response is improved with the closed-loop control. Based on this new strategy, a controller is designed and validated under the simulation and test cell environment. Comparison with the baseline open-loop controller is also conducted. Finally, some conclusions are presented.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

2002-10-21
2002-01-2889
Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed.
Technical Paper

Experimental Determination of the Kinetics of Diesel Soot Oxidation by O2 - Modeling Consequences

2003-03-03
2003-01-0833
Several complementary experimental techniques were applied to investigate kinetics of diesel soot oxidation by O2 in an attempt to provide accurate data for modeling of the Diesel Particulate Filters regeneration process. For two diesel soot samples with measurably different properties, it was shown that the complexity of their overall kinetic behavior was due to an initial period of rapidly changing reactivity. This initial high reactivity was understood not to be related to the SOF, and was quantitatively correlated to the extent of soot pre-oxidation. This initial reactivity can affect the averaged apparent kinetic parameters, for example resulting in the lower apparent activation energy values. After the initial soot pre-oxidation, which consumed ∼10-25% of carbon, the remaining soot was behaving very uniformly, producing linear Arrhenius plots in a remarkably broad range of temperatures (330-610°C) and integral conversions (up to 90%).
Technical Paper

Future Challenges for Engine Manufacturers in View of Future Emissions Legislation

2017-05-10
2017-01-1923
Countries around the world are expected to continue to adopt more stringent emissions standards for heavy-duty markets for both oxides of nitrogen (NOx) and greenhouse gases (GHG). While there is uncertainty about the timing and extent of these regulations, it is clear that significant reductions will be required to address urban air pollution and climate change concerns. The rate and pace of technology evolution and how it will affect the energy pathways for commercial transportation and industrial use are dependent on multiple variables such as national energy and environmental policies and public-private partnerships. Although it adds complexity, the engine system has great potential to evolve as it continues to be highly integrated into the super system for which it is producing power. This paper examines the potential opportunities and challenges for engine manufacturers to continue to be the supplier of power to vehicles and equipment of the future.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Technical Paper

Development of a Kinetic Model to Evaluate Water Storage on Commercial Cu-Zeolite SCR Catalysts during Cold Start

2017-03-28
2017-01-0968
Commercial Cu-Zeolite SCR catalyst can store and subsequently release significant amount of H2O. The process is accompanied by large heat effects. It is critical to model this phenomenon to design aftertreatment systems and to provide robust tuning strategies to meet cold start emissions and low temperature operation. The complex reaction mechanism of water adsorption and desorption over a Cu-exchanged SAPO-34 catalyst at low temperature was studied through steady state and transient experiments. Steady state isotherms were generated using a gravimetric method and then utilized to predict water storage interactions with respect to feed concentration and catalyst temperature. Transient temperature programmed desorption (TPD) experiments provided the kinetic information required to develop a global kinetic model from the experimental data. The model captures fundamental characteristics of water adsorption and desorption accompanied by the heat effects.
Technical Paper

Diesel Engines Gear Whine: Production Plant Perspective

2017-06-05
2017-01-1809
Engine noise is one of the significant aspects of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues, which is considered objectionable and impacts the customer’s perception of the product quality. Gear whine could result due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. This includes quick overview of the measurement process, test cell environment, noise acceptance criteria considerations. A gear whine case study is presented based on the data collected in the test cell at the engine plant. Gear whine data acquired on current product and next generation of prototype engines is analyzed and presented. This paper concludes by highlighting the lessons learned from the case study.
Technical Paper

Concept Analysis and Initial Results of Engine-Out NOx Estimator Suitable for on ECM Implementation

2016-04-05
2016-01-0611
The interest for NOx estimators (also known as virtual sensors or inferential sensors) has increased over the recent years due to benefits attributed to cost and performance. NOx estimators are typically installed to improve On-Board Diagnostics (OBD) monitors or to lower bill of material costs by replacing physical NOx sensors. This paper presents initial development results of a virtual engine-out NOx estimator planned for the implementation on an ECM. The presented estimator consists of an airpath observer and a NOx combustion model. The role of the airpath observer is to provide input values for the NOx combustion model such as the states of the gas at the intake and exhaust manifolds. It contains a nonlinear mean-value model of the airpath suitably transformed for an efficient and robust implementation on an ECM. The airpath model uses available sensory information in the vehicle to correct predictions of the gas states.
Technical Paper

Decoupling the Interactions of Hydrocarbons and Oxides of Nitrogen Over Diesel Oxidation Catalysts

2011-04-12
2011-01-1137
Oxidation of NO to NO₂ over a Diesel Oxidation Catalyst (DOC) plays an important role in different types of aftertreatment systems, by enhancing NOx storage on adsorber catalysts, improving the NOx reduction efficiency of SCR catalysts, and enabling the passive regeneration of Diesel Particulate Filters (DPF). The presence of hydrocarbon (HC) species in the exhaust is known to affect the NO oxidation performance over a DOC; however, specific details of this effect, including its underlying mechanism, remain poorly understood. Two major pathways are commonly considered to be responsible for the overall effect: NO oxidation inhibition, due to the presence of HC, and the consumption of the NO₂ produced by reaction with hydrocarbons. In this work we have attempted to decouple these two pathways, by adjusting the catalyst inlet concentrations of NO and NO₂ to the thermodynamic equilibrium levels and measuring the composition changes over the catalyst in the presence of HC species.
Technical Paper

Reactor System with Diesel Injection Capability for DOC Evaluations

2018-04-03
2018-01-0647
Plug flow reactors, simulating engine exhaust gas, are widely used in emissions control research to gain insight into the reaction mechanisms and engineering aspects that controls activity, selectivity, and durability of catalyst components. The choice of relevant hydrocarbon (HC) species is one of the most challenging factor in such laboratory studies, given the variety of compositions that can be encountered in different application scenarios. Furthermore, this challenge is amplified by the experimental difficulties related to introducing heavier and multi-component HCs and analyzing the reaction products.
Technical Paper

Experimental and Kinetic Modeling of Degreened and Aged Three-way Catalysts: Aging Impact on Oxygen Storage Capacity and Catalyst Performance

2018-04-03
2018-01-0950
The aging impact on oxygen storage capacity (OSC) and catalyst performance was investigated on one degreened and one aged (hydrothermally aged at 955 °C for 50 h) commercial three-way catalyst (TWC) by experiments and modeling. The difference of OSC between the degreened and aged TWCs was dependent on catalyst temperature. The largest difference was found at 600 °C, at which the amount of OSC decreased by 45.5%. Catalyst performance was evaluated through lightoff tests at two simulated engine exhaust conditions (lean and rich) on a micro-reactor. The aging impact on the catalyst performance was different under lean and rich environments and investigated separately. At the lean condition, oxidation of CO and C3H6 was significantly suppressed while oxidation of C3H8 was relatively less degraded. At the rich condition, the inhibition effect was more pronounced on the aged TWC and inhibiting hydrocarbon species from C3H6 partial oxidation can survive at temperatures up to 450 °C.
Technical Paper

Analysis of Particulate Matter Sensor Signals

2012-04-16
2012-01-0871
Production PM sensors are now available and are likely to be key components of PM aftertreatment systems designed to meet 2013 OBD requirements. In this paper a highly simplified analysis is used to give insight into the sensor response of resistive-based devices, and to motivate possible diagnostic strategies. The method has been applied to successive sets of FTP data recorded with DPF's of different failure levels, and despite the very approximate nature of the underlying model, the method appears to discriminate reliably between them.
Technical Paper

Comparison of SCR Catalyst Performance on RMC SET Emission Cycle between an Engine and a High Flow Burner Rig

2013-04-08
2013-01-1070
Government agencies like EPA play an important role through regulation to reduce emissions and fuel consumption and to drive technological developments to reduce the environmental impact of burning petroleum fuels. Emissions testing and control is one of the leading and growing fields in the development of modern vehicles. Recently, Cummins Emissions Solutions (CES) and Southwest Research Institute (SwRI) worked jointly in order to achieve a method to conduct emissions testing efficiently and effectively. The collaborative work between the two organizations led to the usage of FOCAS HGTR™ (a diesel-based burner test rig at SwRI) to simulate the exhaust conditions generated by a 2010 ISX Cummins production engine operating over an EPA standard Ramped Modal Cycle Supplemental Emissions Test (RMC SET) cycle.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
X